Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.086
Filtrar
2.
Cell Mol Life Sci ; 81(1): 77, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315242

RESUMO

BACKGROUND: Obesity-associated dysfunctional intestinal permeability contributes to systemic chronic inflammation leading to the development of metabolic diseases. The inflammasomes constitute essential components in the regulation of intestinal homeostasis. We aimed to determine the impact of the inflammasomes in the regulation of gut barrier dysfunction and metabolic inflammation in the context of obesity and type 2 diabetes (T2D). METHODS: Blood samples obtained from 80 volunteers (n = 20 normal weight, n = 21 OB without T2D, n = 39 OB with T2D) and a subgroup of jejunum samples were used in a case-control study. Circulating levels of intestinal damage markers and expression levels of inflammasomes as well as their main effectors (IL-1ß and IL-18) and key inflammation-related genes were analyzed. The impact of inflammation-related factors, different metabolites and Akkermansia muciniphila in the regulation of inflammasomes and intestinal integrity genes was evaluated. The effect of blocking NLRP6 by using siRNA in inflammation was also studied. RESULTS: Increased circulating levels (P < 0.01) of the intestinal damage markers endotoxin, LBP, and zonulin in patients with obesity decreased (P < 0.05) after weight loss. Patients with obesity and T2D exhibited decreased (P < 0.05) jejunum gene expression levels of NLRP6 and its main effector IL18 together with increased (P < 0.05) mRNA levels of inflammatory markers. We further showed that while NLRP6 was primarily localized in goblet cells, NLRP3 was localized in the intestinal epithelial cells. Additionally, decreased (P < 0.05) mRNA levels of Nlrp1, Nlrp3 and Nlrp6 in the small intestinal tract obtained from rats with diet-induced obesity were found. NLRP6 expression was regulated by taurine, parthenolide and A. muciniphila in the human enterocyte cell line CCL-241. Finally, a significant decrease (P < 0.01) in the expression and release of MUC2 after the knockdown of NLRP6 was observed. CONCLUSIONS: The increased levels of intestinal damage markers together with the downregulation of NLRP6 and IL18 in the jejunum in obesity-associated T2D suggest a defective inflammasome sensing, driving to an impaired epithelial intestinal barrier that may regulate the progression of multiple obesity-associated comorbidities.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Humanos , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , 60435 , Estudos de Casos e Controles , Inflamação , Obesidade/complicações , RNA Mensageiro/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Vasopressinas/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279313

RESUMO

The present review draws attention to the specific role of angiotensin peptides [angiotensin II (Ang II), angiotensin-(1-7) (Ang-(1-7)], vasopressin (AVP), and insulin in the regulation of the coronary blood flow and cardiac contractions. The interactions of angiotensin peptides, AVP, and insulin in the heart and in the brain are also discussed. The intracardiac production and the supply of angiotensin peptides and AVP from the systemic circulation enable their easy access to the coronary vessels and the cardiomyocytes. Coronary vessels and cardiomyocytes are furnished with AT1 receptors, AT2 receptors, Ang (1-7) receptors, vasopressin V1 receptors, and insulin receptor substrates. The presence of some of these molecules in the same cells creates good conditions for their interaction at the signaling level. The broad spectrum of actions allows for the engagement of angiotensin peptides, AVP, and insulin in the regulation of the most vital cardiac processes, including (1) cardiac tissue oxygenation, energy production, and metabolism; (2) the generation of the other cardiovascular compounds, such as nitric oxide, bradykinin (Bk), and endothelin; and (3) the regulation of cardiac work by the autonomic nervous system and the cardiovascular neurons of the brain. Multiple experimental studies and clinical observations show that the interactions of Ang II, Ang(1-7), AVP, and insulin in the heart and in the brain are markedly altered during heart failure, hypertension, obesity, and diabetes mellitus, especially when these diseases coexist. A survey of the literature presented in the review provides evidence for the belief that very individualized treatment, including interactions of angiotensins and vasopressin with insulin, should be applied in patients suffering from both the cardiovascular and metabolic diseases.


Assuntos
Angiotensina II , Diabetes Mellitus , Insulina , Obesidade , Vasopressinas , Humanos , Angiotensina II/metabolismo , Arginina Vasopressina/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Vasopressinas , Vasopressinas/metabolismo
4.
Sci Rep ; 14(1): 291, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168911

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP2) has been shown to be critical for the endocytosis of G protein-coupled receptors (GPCRs). We have previously demonstrated that depletion of PIP2 by chemically induced plasma membrane (PM) recruitment of a 5-phosphatase domain prevents the internalization of the ß2 adrenergic receptor (ß2AR) from the PM to early endosomes. In this study, we tested the effect of hormone-induced PM PIP2 depletion on ß2AR internalization using type-1 angiotensin receptor (AT1R) or M3 muscarinic acetylcholine receptor (M3R). We followed the endocytic route of ß2ARs in HEK 293T cells using bioluminescence resonance energy transfer between the receptor and endosome marker Rab5. To compare the effect of lipid depletion by different means, we created and tested an AT1R fusion protein that is capable of both recruitment-based and hormone-induced depletion methods. The rate of PM PIP2 depletion was measured using a biosensor based on the PH domain of phospholipase Cδ1. As expected, ß2AR internalization was inhibited when PIP2 depletion was evoked by recruiting 5-phosphatase to PM-anchored AT1R. A similar inhibition occurred when wild-type AT1R was activated by adding angiotensin II. However, stimulation of the desensitization/internalization-impaired mutant AT1R (TSTS/4A) caused very little inhibition of ß2AR internalization, despite the higher rate of measurable PIP2 depletion. Interestingly, inhibition of PIP2 resynthesis with the selective PI4KA inhibitor GSK-A1 had little effect on the change in PH-domain-measured PM PIP2 levels but did significantly decrease ß2AR internalization upon either AT1R or M3R activation, indicating the importance of a locally synthetized phosphoinositide pool in the regulation of this process.


Assuntos
Endocitose , Fosfatidilinositóis , Fosfatidilinositóis/metabolismo , Membrana Celular/metabolismo , Receptores de Angiotensina/metabolismo , Hormônios/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
5.
Can J Physiol Pharmacol ; 102(2): 86-104, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748204

RESUMO

Angiotensin II (Ang II) is formed by the action of angiotensin-converting enzyme (ACE) in the renin-angiotensin system. This hormone is known to induce cardiac hypertrophy and heart failure and its actions are mediated by the interaction of both pro- and antihypertrophic Ang II receptors (AT1R and AT2R). Ang II is also metabolized by ACE 2 to Ang-(1-7), which elicits the activation of Mas receptors (MasR) for inducing antihypertrophic actions. Since heart failure under different pathophysiological situations is preceded by adaptive and maladaptive cardiac hypertrophy, we have reviewed the existing literature to gain some information regarding the roles of AT1R, AT2R, and MasR in both acute and chronic conditions of cardiac hypertrophy. It appears that the activation of AT1R may be involved in the development of adaptive and maladaptive cardiac hypertrophy as well as subsequent heart failure because both ACE inhibitors and AT1R antagonists exert beneficial effects. On the other hand, the activation of both AT2R and MasR may prevent the occurrence of maladaptive cardiac hypertrophy and delay the progression of heart failure, and thus therapy with different activators of these antihypertrophic receptors under chronic pathological stages may prove beneficial. Accordingly, it is suggested that a great deal of effort should be made to develop appropriate activators of both AT2R and MasR for the treatment of heart failure subjects.


Assuntos
Insuficiência Cardíaca , Receptores de Angiotensina , Humanos , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Cardiomegalia , Angiotensina II/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo
6.
Eur J Pharmacol ; 961: 176189, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951489

RESUMO

The renin-angiotensin system is one of the most complex regulatory systems that controls multiple organ functions. One of its key components, angiotensin II (Ang II), stimulates two G-protein coupled class A receptors: the Ang II type 1 (AT1) receptor and the Ang II type 2 (AT2) receptor. While stimulation of the AT1 receptor causes G-protein-dependent signaling and arrestin recruitment, the AT2 receptor seems to have a constitutively active-like conformation and appears to act via G-protein-dependent and -independent pathways. Overstimulation of the AT1 receptor may lead to unwanted effects like inflammation and fibrosis. In contrast, stimulation of the AT2 receptor leads to opposite effects thus restoring the balance. However, the role of the AT2 receptor has become controversial due to beneficial effects of putative AT2 receptor antagonists. The two first synthetic AT2 receptor-selective ligands, peptide CGP42112 and small molecule PD123319, were initially both considered antagonists. CGP42112 was subsequently considered a partial agonist and it was recently demonstrated to be a full agonist. Based on the search-term PD123319 in Pubmed, 1652 studies have investigated putative AT2 receptor antagonist PD123319. Here, we put forward literature that shows beneficial effects of PD123319 alone, even at doses too low for antagonist efficacy. These beneficial effects appear compatible with agonist-like activity via the AT2 receptor. Taken together, a more consistent image of a therapeutic role of stimulated AT2 receptor emerges which may clarify current controversies.


Assuntos
Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina , Receptor Tipo 2 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Transdução de Sinais , Angiotensina II/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina
7.
Biochem Pharmacol ; 217: 115839, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778444

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease whereby excessive deposition of extracellular matrix proteins (ECM) ultimately leads to respiratory failure. While there have been advances in pharmacotherapies for pulmonary fibrosis, IPF remains an incurable and irreversible disease. There remains an unmet clinical need for treatments that reverse fibrosis, or at the very least have a more tolerable side effect profile than currently available treatments. Transforming growth factor ß1(TGFß1) is considered the main driver of fibrosis in IPF. However, as our understanding of the role of the pulmonary renin-angiotensin system (PRAS) in the pathogenesis of IPF increases, it is becoming clear that targeting angiotensin receptors represents a potential novel treatment strategy for IPF - in particular, via activation of the anti-fibrotic angiotensin type 2 receptor (AT2R). This review describes the current understanding of the pathophysiology of IPF and the mediators implicated in its pathogenesis; focusing on TGFß1, angiotensin II and related peptides in the PRAS and their contribution to fibrotic processes in the lung. Preclinical and clinical assessment of currently available AT2R agonists and the development of novel, highly selective ligands for this receptor will also be described, with a focus on compound 21, currently in clinical trials for IPF. Collectively, this review provides evidence of the potential of AT2R as a novel therapeutic target for IPF.


Assuntos
Fibroblastos , Fibrose Pulmonar Idiopática , Humanos , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Fibrose , Angiotensina II/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Angiotensina/uso terapêutico
8.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511174

RESUMO

In angiotensin II (Ang II)-dependent hypertension, Ang II activates angiotensin II type 1 receptors (AT1R) on renal vascular smooth muscle cells, leading to renal vasoconstriction with eventual glomerular and tubular injury and interstitial inflammation. While afferent arteriolar vasoconstriction is initiated by the increased intrarenal levels of Ang II activating AT1R, the progressive increases in arterial pressure stimulate the paracrine secretion of adenosine triphosphate (ATP), leading to the purinergic P2X receptor (P2XR)-mediated constriction of afferent arterioles. Thus, the afferent arteriolar tone is maintained by two powerful systems eliciting the co-existing activation of P2XR and AT1R. This raises the conundrum of how the AT1R and P2XR can both be responsible for most of the increased renal afferent vascular resistance existing in angiotensin-dependent hypertension. Its resolution implies that AT1R and P2XR share common receptor or post receptor signaling mechanisms which converge to maintain renal vasoconstriction in Ang II-dependent hypertension. In this review, we briefly discuss (1) the regulation of renal afferent arterioles in Ang II-dependent hypertension, (2) the interaction of AT1R and P2XR activation in regulating renal afferent arterioles in a setting of hypertension, (3) mechanisms regulating ATP release and effect of angiotensin II on ATP release, and (4) the possible intracellular pathways involved in AT1R and P2XR interactions. Emerging evidence supports the hypothesis that P2X1R, P2X7R, and AT1R actions converge at receptor or post-receptor signaling pathways but that P2XR exerts a dominant influence abrogating the actions of AT1R on renal afferent arterioles in Ang II-dependent hypertension. This finding raises clinical implications for the design of therapeutic interventions that will prevent the impairment of kidney function and subsequent tissue injury.


Assuntos
Angiotensina II , Hipertensão , Rim , Receptor Tipo 1 de Angiotensina , Receptores Purinérgicos P2X , Humanos , Trifosfato de Adenosina/metabolismo , Angiotensina II/metabolismo , Arteríolas/metabolismo , Hipertensão/metabolismo , Rim/irrigação sanguínea , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Angiotensina/metabolismo , Receptores Purinérgicos P2X/metabolismo
10.
Hypertens Res ; 46(8): 1970-1982, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308552

RESUMO

The Renin-Angiotensin-Aldosterone System (RAAS) is implicated in the pathophysiology of preeclampsia (PE). There is a paucity of data on uteroplacental angiotensin receptors AT1-2 and 4. We evaluated the immunoexpression of AT1R, AT2R, and AT4R within the placental bed of PE vs. normotensive (N) pregnancies stratified by HIV status. Placental bed (PB) biopsies (n = 180) were obtained from N and PE women. Both groups were stratified by HIV status and gestational age into early-and late onset-PE. Immuno-labeling of AT1R, AT2R, and AT4R was quantified using morphometric image analysis. Immunostaining of PB endothelial cells (EC) and smooth muscle cells of spiral arteries (VSMC) displayed an upregulation of AT1R expression compared to the N group (p < 0.0001). Downregulation of AT2R and AT4R expression was observed in PE vs. N group (p = 0.0042 and p < 0.0001), respectively. AT2R immunoexpression declined between HIV+ve and HIV-ve groups, while AT1R and AT4R displayed an increase. An increase in AT1R expression was noted in the EOPE-ve/+ve and LOPE-ve/+ve compared to N-ve/N+ve. In contrast, AT2R and AT4R expression decreased in EOPE-ve/+ve and LOPE-ve/+ve compared to N-ve/N+ve. We demonstrate a significant downregulation of AT2R and AT4R with a concomitant elevated AT1R immunoexpression within PB of HIV-infected PE women. In addition, a decline in AT2R and AT4R with an increase in AT1R immunoexpression in PE, EOPE, and LOPE vs. normotensive pregnancies, irrespective of HIV status. Thus highlighting differential immunoexpression of uteroplacental RAAS receptors based on pregnancy type, HIV status, and gestational age.


Assuntos
Infecções por HIV , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Receptores de Angiotensina/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Células Endoteliais/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo
11.
J Pathol ; 260(3): 353-364, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37256677

RESUMO

Alport syndrome (AS), a type IV collagen disorder, leads to glomerular disease and, in some patients, hearing loss. AS is treated with inhibitors of the renin-angiotensin system; however, a need exists for novel therapies, especially those addressing both major pathologies. Sparsentan is a single-molecule dual endothelin type-A and angiotensin II type 1 receptor antagonist (DEARA) under clinical development for focal segmental glomerulosclerosis and IgA nephropathy. We report the ability of sparsentan to ameliorate both renal and inner ear pathologies in an autosomal-recessive Alport mouse model. Sparsentan significantly delayed onset of glomerulosclerosis, interstitial fibrosis, proteinuria, and glomerular filtration rate decline. Sparsentan attenuated glomerular basement membrane defects, blunted mesangial filopodial invasion into the glomerular capillaries, increased lifespan more than losartan, and lessened changes in profibrotic/pro-inflammatory gene pathways in both the glomerular and the renal cortical compartments. Notably, treatment with sparsentan, but not losartan, prevented accumulation of extracellular matrix in the strial capillary basement membranes in the inner ear and reduced susceptibility to hearing loss. Improvements in lifespan and in renal and strial pathology were observed even when sparsentan was initiated after development of renal pathologies. These findings suggest that sparsentan may address both renal and hearing pathologies in Alport syndrome patients. © 2023 Travere Therapeutics, Inc and The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Orelha Interna , Nefrite Hereditária , Animais , Camundongos , Nefrite Hereditária/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Angiotensina/uso terapêutico , Membrana Basal Glomerular/metabolismo , Colágeno Tipo IV/genética , Orelha Interna/metabolismo , Orelha Interna/patologia , Endotelinas/metabolismo , Endotelinas/uso terapêutico
12.
Bioorg Med Chem Lett ; 90: 129349, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236375

RESUMO

Molecular design, synthesis, in vitro and in vivo studies of novel derivatives of indole-3-carboxylic acid new series of angiotensin II receptor 1 antagonists is presented. Radioligand binding studies using [125I]-angiotensin II displayed that new derivatives of indole-3-carboxylic acid have a high nanomolar affinity for the angiotensin II receptor (AT1 subtype) on a par with the known pharmaceuticals such as losartan. Biological studies of synthesized compounds in spontaneously hypertensive rats have demonstrated that compounds can lower blood pressure when administered orally. Maximum the decrease in blood pressure was 48 mm Hg with oral administration of 10 mg/kg and antihypertensive effect was observed for 24 h, which is superior to losartan.


Assuntos
Anti-Hipertensivos , Hipertensão , Ratos , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Losartan/farmacologia , Hipertensão/tratamento farmacológico , Antagonistas de Receptores de Angiotensina/química , Antagonistas de Receptores de Angiotensina/farmacologia , Pressão Sanguínea , Ratos Endogâmicos SHR , Receptores de Angiotensina/metabolismo , Angiotensina II/farmacologia , Tetrazóis/química , Compostos de Bifenilo/química
13.
EMBO J ; 42(11): e112940, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37038975

RESUMO

The peptide hormone angiotensin II regulates blood pressure mainly through the type 1 angiotensin II receptor AT1 R and its downstream signaling proteins Gq and ß-arrestin. AT1 R blockers, clinically used as antihypertensive drugs, inhibit both signaling pathways, whereas AT1 R ß-arrestin-biased agonists have shown great potential for the treatment of acute heart failure. Here, we present a cryo-electron microscopy (cryo-EM) structure of the human AT1 R in complex with a balanced agonist, Sar1 -AngII, and Gq protein at 2.9 Å resolution. This structure, together with extensive functional assays and computational modeling, reveals the molecular mechanisms for AT1 R signaling modulation and suggests that a major hydrogen bond network (MHN) inside the receptor serves as a key regulator of AT1 R signal transduction from the ligand-binding pocket to both Gq and ß-arrestin pathways. Specifically, we found that the MHN mutations N1113.35 A and N2947.45 A induce biased signaling to Gq and ß-arrestin, respectively. These insights should facilitate AT1 R structure-based drug discovery for the treatment of cardiovascular diseases.


Assuntos
Angiotensina II , Transdução de Sinais , Humanos , Microscopia Crioeletrônica , Transdução de Sinais/fisiologia , beta-Arrestinas/metabolismo , Angiotensina II/química , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Receptores de Angiotensina/metabolismo
14.
Genes (Basel) ; 14(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37107585

RESUMO

Biallelic mutations in the gene encoding WFS1 underlie the development of Wolfram syndrome (WS), a rare neurodegenerative disorder with no available cure. We have previously shown that Wfs1 deficiency can impair the functioning of the renin-angiotensin-aldosterone system (RAAS). The expression of two key receptors, angiotensin II receptor type 2 (Agtr2) and bradykinin receptor B1 (Bdkrb1), was downregulated both in vitro and in vivo across multiple organs in a rat model of WS. Here, we show that the expression of key RAAS components is also dysregulated in neural tissue from aged WS rats and that these alterations are not normalized by pharmacological treatments (liraglutide (LIR), 7,8-dihydroxyflavone (7,8-DHF) or their combination). We found that the expression of angiotensin II receptor type 1a (Agtr1a), angiotensin II receptor type 1b (Agtr1b), Agtr2 and Bdkrb1 was significantly downregulated in the hippocampus of WS animals that experienced chronic experimental stress. Treatment-naïve WS rats displayed different gene expression patterns, underscoring the effect of prolonged experiment-induced stress. Altogether, we posit that Wfs1 deficiency disturbs RAAS functioning under chronic stressful conditions, thereby exacerbating neurodegeneration in WS.


Assuntos
Síndrome de Wolfram , Ratos , Animais , Síndrome de Wolfram/genética , Sistema Renina-Angiotensina/genética , Liraglutida/farmacologia , Receptores de Angiotensina/metabolismo , Proteínas de Ligação a Calmodulina/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
15.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768653

RESUMO

The renin-angiotensin system (RAS) is one of the main regulatory systems of cardiovascular homeostasis. It is mainly composed of angiotensin-converting enzyme (ACE) and angiotensin II receptors AT1 and AT2. ACE and AT1 are targets of choice for the treatment of hypertension, whereas the AT2 receptor is still not exploited due to the lack of knowledge of its physiological properties. Peptide toxins from venoms display multiple biological functions associated with varied chemical and structural properties. If Brazilian viper toxins have been described to inhibit ACE, no animal toxin is known to act on AT1/AT2 receptors. We screened a library of toxins on angiotensin II receptors with a radioligand competition binding assay. Functional characterization of the selected toxin was conducted by measuring second messenger production, G-protein activation and ß-arrestin 2 recruitment using bioluminescence resonance energy transfer (BRET) based biosensors. We identified one original toxin, A-CTX-cMila, which is a 7-residues cyclic peptide from Conus miliaris with no homology sequence with known angiotensin peptides nor identified toxins, displaying a 100-fold selectivity for AT1 over AT2. This toxin shows a competitive antagonism mode of action on AT1, blocking Gαq, Gαi3, GαoA, ß-arrestin 2 pathways and ERK1/2 activation. These results describe the first animal toxin active on angiotensin II receptors.


Assuntos
Hipertensão , Receptor Tipo 1 de Angiotensina , Humanos , Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina , beta-Arrestina 2/metabolismo , Peptídeos/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais
16.
PLoS One ; 17(9): e0270306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112580

RESUMO

Obesity is a leading global health problem contributing to various chronic diseases, including type II diabetes mellitus (T2DM). The aim of this study was to investigate whether blueberries, yoghurt, and their respective bioactive components, Cyanidin-3-O-ß-glucoside (C3G) and peptides alone or in combinations, alter the expression of genes related to glucose metabolism in skeletal muscles from diet-induced obese mice. In extensor digitorum longus (EDL), yoghurt up-regulated the expression of activation of 5'adenosine monophosphate-activated protein kinase (AMPK), insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3 kinase (PI3K) and glucose transporter 4 (GLUT4), and down-regulated the expression of angiotensin II receptor type 1 (AGTR-1). The combination of blueberries and yoghurt down-regulated the mRNA expression of AGTR-1 and Forkhead box protein O1 (FoxO1) in the EDL. Whereas the combination of C3G and peptides down-regulated AGTR-1 and up-regulated GLUT4 mRNA expression in the EDL. In the soleus, blueberries and yoghurt alone, and their combination down-regulated AGTR-1 and up-regulated GLUT4 mRNA expression. In summary blueberries and yoghurt, regulated multiple genes associated with glucose metabolism in skeletal muscles, and therefore may play a role in the management and prevention of T2DM.


Assuntos
Antocianinas , Mirtilos Azuis (Planta) , Diabetes Mellitus Tipo 2 , Glucose , Obesidade , Iogurte , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Antocianinas/metabolismo , Antocianinas/farmacologia , Mirtilos Azuis (Planta)/química , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Proteína Forkhead Box O1/metabolismo , Expressão Gênica , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Camundongos Obesos , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , RNA Mensageiro/metabolismo , Receptores de Angiotensina/metabolismo
17.
Biochem Pharmacol ; 205: 115263, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174768

RESUMO

The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.


Assuntos
Anti-Hipertensivos , Hipertensão , Humanos , Anti-Hipertensivos/farmacologia , Músculo Liso Vascular/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Neprilisina/metabolismo , Óxido Nítrico/metabolismo , Hipertensão Essencial/tratamento farmacológico , Hipertensão Essencial/metabolismo , Inibidores da Fosfodiesterase 5/uso terapêutico , Receptor de Endotelina A/metabolismo , Hipertensão/metabolismo , Sistema Renina-Angiotensina , Endotelinas/metabolismo , Endotelinas/farmacologia , Endotelinas/uso terapêutico , Antagonistas dos Receptores de Endotelina/farmacologia , Receptores de Angiotensina/metabolismo , Receptores de Angiotensina/uso terapêutico , Glucose/metabolismo , Sódio/metabolismo , Sódio/farmacologia , Sódio/uso terapêutico
18.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955421

RESUMO

Hypertension is an important public health challenge, affecting up to 30-50% of adults worldwide. Several epidemiological studies indicate that high blood pressure originates in fetal life-the so-called programming effect or developmental origin of hypertension. Iron-deficiency anemia has become one of the most prevalent nutritional problems globally. Previous animal experiments have shown that prenatal iron-deficiency anemia adversely affects offspring hypertension. However, the underlying mechanism remains unclear. We used a maternal low-iron diet Sprague Dawley rat model to study changes in blood pressure, the renal renin-angiotensin system, oxidative stress, inflammation, and sodium transporters in adult male offspring. Our study revealed that 16-week-old male offspring born to mothers with low dietary iron throughout pregnancy and the lactation period had (1) higher blood pressure, (2) increased renal cortex angiotensin II receptor type 1 and angiotensin-converting enzyme abundance, (3) decreased renal cortex angiotensin II receptor type 2 and MAS abundance, and (4) increased renal 8-hydroxy-2'-deoxyguanosine and interleukin-6 abundance. Improving the iron status of pregnant mothers could influence the development of hypertension in their offspring.


Assuntos
Anemia Ferropriva , Hipertensão , Deficiências de Ferro , Efeitos Tardios da Exposição Pré-Natal , Anemia Ferropriva/metabolismo , Animais , Pressão Sanguínea , Feminino , Hipertensão/metabolismo , Ferro/metabolismo , Ferro da Dieta/metabolismo , Rim/metabolismo , Lactação , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Estresse Oxidativo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina
19.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956801

RESUMO

Angiotensin receptor blockers (ARBs) used in the treatment of hypertension and potentially in SARS-CoV-2 infection exhibit inverse agonist effects at angiotensin AR1 receptors, suggesting the receptor may have evolved to accommodate naturally occurring angiotensin 'antipeptides'. Screening of the human genome has identified a peptide (EGVYVHPV) encoded by mRNA, complementary to that encoding ANG II itself, which is an inverse agonist. Thus, opposite strands of DNA encode peptides with opposite effects at AR1 receptors. Agonism and inverse agonism at AR1 receptors can be explained by a receptor 'switching' between an activated state invoking receptor dimerization/G protein coupling and an inverse agonist state mediated by an alternative/second messenger that is slow to reverse. Both receptor states appear to be driven by the formation of the ANG II charge-relay system involving TyrOH-His/imidazole-Carboxylate (analogous to serine proteases). In this system, tyrosinate species formed are essential for activating AT1 and AT2 receptors. ANGII is also known to bind to the zinc-coordinated metalloprotease angiotensin converting enzyme 2 (ACE2) used by the COVID-19 virus to enter cells. Here we report in silico results demonstrating the binding of a new class of anionic biphenyl-tetrazole sartans ('Bisartans') to the active site zinc atom of the endopeptidase Neprilysin (NEP) involved in regulating hypertension, by modulating humoral levels of beneficial vasoactive peptides in the RAS such as vasodilator angiotensin (1-7). In vivo and modeling evidence further suggest Bisartans can inhibit ANG II-induced pulmonary edema and may be useful in combatting SARS-CoV-2 infection by inhibiting ACE2-mediated viral entry to cells.


Assuntos
Tratamento Farmacológico da COVID-19 , Hipertensão , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Humanos , Hipertensão/tratamento farmacológico , Neprilisina/metabolismo , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina , SARS-CoV-2 , Zinco/farmacologia
20.
Niger J Physiol Sci ; 37(1): 35-42, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35947836

RESUMO

This study was designed to investigate the modulatory role of Luteolin (Lut), a flavonoid phytochemical, on haemodynamic parameters and the potential mechanisms involving renal Angiotensin II (AT2R) and Mineralocorticoid (MCR) receptors in renal toxicity induced by co-exposure to Diclofenac (Dcf) and sodium fluoride (NaF) in rats.Male Wistar rats were administered with either vehicle (control), Dcf only (9 mg/kg orally) or concurrently with NaF (300 ppm in drinking water). Other groups were treated with LutA (100 mg/kg) or LutB (200 mg/kg) along with Dcf and NaF exposures. All treatments lasted 8 days, following which blood pressure indices were measured using tail-cuff plethysmography. Renal expressions of AT2R and MCR were studied with immunohistochemistry, while biomarkers of oxidative and antioxidant status were also measured in the kidneys. Systolic, diastolic and mean arterial pressures were significantly (p<0.05) reduced in Dcf-treated rats, compared to control values. However, co-treatment with NaF or Lut restored these parameters. While the expression of AT2R and MCR was high in the Dcf and Dcf+NaF groups, treatment with Lut caused obvious reduction in the renal expression of these receptors. Increased lipid peroxidation (Malondialdehyde) and protein oxidation (protein carbonyls) with a lowering of reduced glutathione levels contributed to the renal toxicity of Dcf, and these were significantly ameliorated in Lut-treated rats. In conclusion, the preservation of haemodynamic indices by Lutin the experimental ratsprobably included mechanisms involving down-regulation of renal expressions of AT2R and MCR, reduction of oxidative stress and an improvement of renal antioxidant status.


Assuntos
Antioxidantes , Fluoreto de Sódio , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Pressão Sanguínea , Diclofenaco/metabolismo , Diclofenaco/toxicidade , Regulação para Baixo , Rim/metabolismo , Luteolina/metabolismo , Luteolina/farmacologia , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Receptores de Angiotensina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Fluoreto de Sódio/metabolismo , Fluoreto de Sódio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...